Modeling 3D Facial Shape from DNA. P Claes, DK Liberton, K Daniels, KM Rosana, EE Quillen, LN Pearson, B McEvoy, M Bauchet, AA Zaidi, W Yao, H Tang, GS Barsh, DM Absher, MD Shriver.

Date: March 2014
Source: PLOS Genetics.
Abstract: Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers.

Article: Modeling 3D Facial Shape from DNA.
Authors: Peter Claes, Denise K. Liberton, Katleen Daniels, Kerri Matthes Rosana, Ellen E. Quillen, Laurel N. Pearson, Brian McEvoy, Marc Bauchet, Arslan A. Zaidi, Wei Yao, Hua Tang, Gregory S. Barsh, Devin M. Absher, David A. Puts, Jorge Rocha, Sandra Beleza, Rinaldo W. Pereira, Gareth Baynam, Paul Suetens, Dirk Vandermeulen, Jennifer K. Wagner, James S. Boster, Mark D. Shriver.

0 Comments

Leave a comment